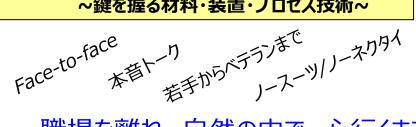
3年ぶりの修善寺開催に併せて2つの特別展示を企画!


一般社団法人 エレクトロニクス実装学会 主催

第32回 **2023 JIEP修善寺ワークショップ^{。開催案内}**

2023年10月12日(木)~13日(金) ラフォーレ修善寺 サンパティックホール

一般参加者大募集!

日本半導体の産業復権を支える実装技術 ~鍵を握る材料・装置・プロセス技術~

職場を離れ、自然の中で、心行くまでディスカッションしよう!

■ 招待講演

『半導体実装装置メーカからみた日本の半導体産業への期待と実装技術(仮)』

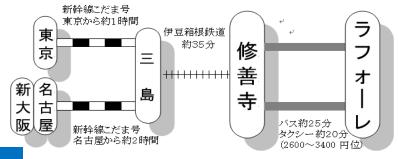
寺田 勝美 様 (東レエンジニアリング株式会社)

■ ナイトセッション『電動車搭載デバイスの実装技術と関連特許について』

* 特別展示 『 EV用駆動モジュール"eアスクル"などの分解展示』

箸尾 勝様 (株式会社エルテック)

■ 特別展示


日本初の民間ロケット開発企業 インターステラテクノロジズ社による 『ロケットエンジン、アビオニクスの実物展示と技術紹介』

■ ポスター発表(45件)

配線、3D/光、実装材料、プロセス・装置、接合技術、パワエレ、センシング分野から厳選

2023ワークショップ実行委員会 委員長 子林 みどり (CYBERDYNE)

アクセス

スケジュール(予定)

修善寺駅からは送迎バスをご利用ください。

10月12日(木)		10月13日(金)		
13:00~	登録開始	07:30~08:30	朝食	
13:30~13:50	オリエンテーション	09:15~	2日目セッション開始	
13:50~15:00	第1セッション (アブストラクトトーク)	09:30~10:30	第 3 セッション (アブストラクトトーク)	
15:00~17:00	第 1 セッション (ポスター)	10:30~11:30	第 3 セッション (ポスター前半)	
18:00~19:30	夕食 (立食形式懇親会)	11:30~12:30	昼食	
20:00~21:00	ナイトセッション講演	12:30~13:30	第3セッション (ポスター後半)	
21:00~	第2セッション(自由討論)	13:40~14:40	招待講演	
	就寝	14:45~	アンケート・閉会式・現地解散	

プログラム

■ナイトセッション・特別展示 『電動車搭載デバイスの実装技術と関連特許について』 箸尾 勝/エルテック

(敬省略)

■特別展示 日本初の民間ロケット開発企業インターステラテクノロジズ社より

『ロケットエンジン、アビオニクスの実物展示と技術紹介』 ■招待講演 『半導体実装装置メーカからみた,日本の半導体産業への期待と実装技術(仮)』 寺田 勝美/東レエンジニアリング

■ ポスターセッション

■ポスターセッション					
10/12(木) 15:00 - 17:00 (第1セッション)		10	10/13 (金) 10:30-11:30/12:30-13:30(第3セッション)		
	1. ウェットプロセスによる超高アスペクトSi加工への挑戦と		22. (仮題)インプリントによる高アスペクト配線/バンプ形成		
님	その応用 川上宙輝/東芝	直加工	小松 裕司/コネクテックジャパン		
配線/垂直加工	2. より深くより真っ直ぐに。2周波ICP-TSV技術	値加	23. レジストレスでの配線形成を可能とする選択的表面改質法		
	鈴木 大地/アルバック	配線/垂[によるダイレクトパターニング技術(仮) 堀内義夫/関東学院大学		
	3. 光ナノインプリントを用いた光電コパッケージ実装技術の開発	配	24. 次世代3D-MIDに向けた分子接合剤によるめっき配線形成		
	中村文/産総研		目黒 和幸/岩手県工業技術センター		
	4.3 D チップレット集積のためのポリマーファインビアエッチングプロセス		25. 低荷重接合を実現する先鋭マイクロバンプ接合技術の開発		
3D·光	技術の開発 大竹 文人/アルバック		五十井浩平/パナソニックホールディングス		
	5. ウエハレベル三次元集積化用接着剤の開発	接合技術	26. 液体金属Gaを用いた低温接合		
	新木直子/ダイセル	接合	山中公博/中京大学		
	6. Cavity構造をもつ有機サブストレート基板の反り抑制設計手法		27. 開発効率向上のための半導体接合材における界面電気抵抗		
	森 裕幸/日本IBM		測定手法の確立(仮). 小池 大輔/東芝デバイス&ストレージ		
	7. 各種機能性表面処理剤の開発(耐熱、絶縁、撥液など)		28. (仮) 異種集積向け高速チップレット接着技術の研究		
	佐古 弘志/日本パーカライジング		工藤 拓也/東京工業大学/ 村田製作所		
	8. CFDを用いたアンダーフィルの流体挙動解析	光:	29. Cu-Cuハイブリッド接合用新規接着材料による積層プロセス		
材料技術	宮澤 理沙/日本IBM	3D	検証 田村佳保里/三井化学		
材料	9. 微細配線形成可能な新規低誘電PPEフィルム		30. 紫外線除菌技術Care222の展開について		
	中 佑介/太陽インキ製造		平尾哲治/ウシオ電機		
	10. 再配線層における低誘電ポリイミドの開発(仮題)		31. 次世代向けガラス基板への無電解銅めっきプロセスの開発		
	小笠原 央/東レ		佃 真優/奥野製薬工業		
	11. 自動車電動化に向けた 高耐熱脂環式エポキシ樹脂の開発		32. 低誘電特性と加工性を両立する新規・熱硬化性樹脂の開発		
パワエレ	福住謙亨/ダイセル	朴	渡邊 隆明/三菱ケミカル		
	12. パワー半導体チップ下はんだボイドの熱シミュレーション	材料技術	33. 「のびーる」アクリルエラストマ―基材の開発と導電材料への応用		
	莨谷 平/東芝デバイス&ストレージ	材料			
	13. マイクロスケール力学評価/三次元構造解析の融合による		34. 銅系導電性ペーストの電気的特性および信頼性向上のための		
黑	接合界面局所破壊挙動の解明 松田 朋己/大阪大学		界面化学制御 松浪 由香里/群馬大学		
接合技術	14. チタン超音波接合の進展メカニズムの検討		35. CNT系導電性ペーストの界面電気伝導促進のためのバインダ		
斑	篠原勇人/東芝		配合設計 井上 雅博/群馬大学		
	15. ニッケルナノ粒子 - アルミニウムマイクロ粒子接合材を用いた		36. マイクロLEDディスプレイ製造における歩留まり改善に		
#11	大気加熱による高耐熱接合 小柴佳子/神奈川県立産総研	製造	向けた取り組み 梅田英知/東レエンジニアリング		
輔性	16. 絶縁放熱基板(DBA、DBC)及び実装材料の信頼性評価		37. 次世代パワー半導体への最新モールディング技術		
信	西元 修司/三菱マテリアル	装置			
製造	17. フルアディティブ工法を応用したエレクトロニクス 3 Dプリンター		38. ニセモノ部品排除へ!新規真贋判定プロセスの提案		
	の開発 瀧川 慎二/FUJI 18. 『Advancedpackageprocessに対応したステップ&リピート		高野健/リンテック		
洪置	投影露光装置の現状と課題 ウシオ電機/高橋 遼太郎		39. グラフェンを用いたひずみ制御高感度ガス選択センサの開発		
		<i>'</i> '	QIAO XIANGYU/東北大学		
	19. ドライバーの安全をさりげなく見守る印刷製造シートベルト型	センシング	40. "見える"が拓く半導体DX設計・予測・標準の革新		
Ñ	センサ 野村 健一/産総研	4	寺崎 正/産総研		
センシング	20. ウェアラブルな小型深部体温計測モジュールの開発		41. (筋肉の声に) 耳をすませば		
4	福井翔也/諏訪東京理科大学大学院		竹井裕介/産総研		
	21. 動物における生体情報センシング		42. パワーモジュール用封止材料の湿度拡散に関する検討		
	野上 大史/九州大学		登 羽香奈/三菱電機 43. SiCやGaNなどパワー半導体の性能を究極に生かす3D実装		
*展示は両日実施		パワエレ			
日本初の民間ロケット開発に取り組むインターステラテクノロジズ社より			の可能性 中村 和人/名古屋大学 44. ポリプロピレンの耐熱寿命予測		
「ロケットエンジン、アビオニクスの実物展示と技術紹介」		毌			
	10分プレゼン	信頼性	書田 樹里/東之 45. パワーモジュール用ワイヤ接合部の「機械的疲労試験」		
	10/// (2)		(よる寿命評価 上野優真/鹿児島大学院) (おります) (1995年) (1995年) (1995年) 1995年) (1995年) 1995年) 19		
			にの めなけられ 画 工 判 後 実 / 庇 ル 島 八 手 阮		

申込: 下記よりお申し込みください。

一般参加はこちらから

発表者はこちらから

参加費用: 正会員・賛助会員: ¥45,000、シニア会員: ¥40,000、学生会員: ¥35,000、

一般: ¥55,000 JPCA会員: ¥45,000

(資料代、宿泊費、食事、消費税を含みます。*なお一般の方は、同時に学会にご入会いただくと、

初年度のみ年会費半額で、かつ今回のワークショップに会員扱いでご参加いただけます。)

*宿泊はゆったり70m²のセンターハウス1部屋に4名以下で。

同年代・興味分野の近い方同士で、じっくり議論&交流いただけます。

申込締切: 9月25日(月) (ただし、定員になり次第、締め切らせていただきます。)

定員: 100名(先着申込順), 支払方法: 銀行振込。申込後のキャンセル不可。

問合せ先: 〒167-0042 東京都杉並区西荻北 3-12-2, Tel:03-5310-2010,

Email: 2023ws@jiep.or.jp